Results tagged “Enceladus”

Saturn's E ring consists of micron-sized particles launched from Enceladus by that moon's geological activity. A variety of small-scale structures in the E-ring's brightness have been attributed to tendrils of material recently launched from Enceladus.

The structure of the icy shells of ocean worlds is important for understanding the stability of their underlying oceans as it controls the rate at which heat can be transported outward and radiated to space.

Of profound astrobiological interest is that not only does Enceladus have a water ocean, but it also appears to be salty, important for its likely habitability.

A technique for scanning Mars rocks for microscopic fossils of ancient life is also being developed to hunt for microbes in the deep ice of Enceladus, Titan, and Europa.

One of the most profound discoveries in planetary science over the past 25 years is that worlds with oceans beneath layers of rock and ice are common in our solar system.

The building blocks of Titan and Enceladus are believed to have formed in a late-stage circumplanetary disk around Saturn.

The Cassini mission to the Saturn system discovered a plume of ice grains and water vapor erupting from cracks on the icy surface of the satellite Enceladus. This moon has a global ocean in contact with a rocky core beneath its icy exterior, making it a promising location to search for evidence of extraterrestrial life in the solar system.

Using data from NASA's Cassini spacecraft, scientists at Southwest Research Institute (SwRI) modeled chemical processes in the subsurface ocean of Saturn's moon Enceladus. The studies indicate the possibility that a varied metabolic menu could support a potentially diverse microbial community in the liquid water ocean beneath the moon's icy facade.

New composite images made from NASA's Cassini spacecraft are the most detailed global infrared views ever produced of Saturn's moon Enceladus. And data used to build those images provides strong evidence that the northern hemisphere of the moon has been resurfaced with ice from its interior.

Orbital geophysical investigations of Enceladus are critical to understand its energy balance. Mapping Enceladus' gravity field, improving the accuracy of the physical libration amplitude, and measuring Enceladus' tidal response would provide critical constraints on the internal structure, thus establishing a framework for assessing Enceladus' long-term habitability.

Beneath the icy shell encasing Enceladus, a small icy moon of Saturn, a global ocean of liquid water ejects geyser-like plumes into space through fissures in the ice, making it an attractive place to investigate habitability and to search for extraterrestrial life.

Enceladus is believed to have a saltwater global ocean with a mean depth of at least 30~km, heated from below at the ocean-core interface and cooled at the top, where the ocean loses heat to the icy lithosphere above.

Between 2004 and 2017, spectral observations have been gathered by the Visual and Infrared Mapping Spectrometer (VIMS) on-board Cassini (Brown et al., 2004) during 23 Enceladus close encounters, in addition to more distant surveys.

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a plume of water vapor spewing out from the south polar regions of Enceladus in occultation geometry 7 times during the Cassini mission.

Water plumes erupting from the `tiger stripe' features on the south pole of Enceladus are thought to connect to a global subsurface ocean.

A Southwest Research Institute team developed a new geochemical model that reveals that carbon dioxide (CO2) from within Enceladus, an ocean-harboring moon of Saturn, may be controlled by chemical reactions at its seafloor.

The ice shell on Enceladus, an icy moon of Saturn, exhibits strong asymmetry between the northern and southern hemispheres, with all geysers compacted over the south pole, even though the external configuration is almost perfectly symmetric.

Saturn's icy moon Enceladus is of great interest to scientists due to its subsurface ocean, making it a prime target for those searching for life elsewhere.

New kinds of organic compounds, the ingredients of amino acids, have been detected in the plumes bursting from Saturn's moon Enceladus. The findings are the result of the ongoing deep dive into data from NASA's Cassini mission.

Radar observations of Saturn's moons, Mimas, Enceladus and Tethys, show that Enceladus is acting as a 'snow-cannon,' coating itself and its neighbours with fresh water-ice particles to make them dazzlingly reflective.

« Previous  1 2