Results tagged “Habitable zone”

Cornell University astronomers have created five models representing key points from our planet's evolution, like chemical snapshots through Earth's own geologic epochs.

Since the launch of Kepler and Hubble more than a decade ago, we have come a long way in the quest to find a potentially habitable exoplanet. To date, we have already discovered more than 4000 exoplanets most of which are not suitable for sustaining life.

In this work is investigated the possibility of close-binary star systems having Earth-size planets within their habitable zones.

In the search for life beyond Earth, astronomers look for planets in a star's "habitable zone" -- sometimes nicknamed the "Goldilocks zone" -- where temperatures are just right for liquid water to exist on a planet's surface to nurture life as we know it.

NASA's Transiting Exoplanet Survey Satellite (TESS) has discovered its first Earth-size planet in its star's habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on the surface.

Small exoplanets of nearby M dwarf stars present the possibility to find and characterize habitable worlds within the next decade. TRAPPIST-1, an ultracool M dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition.

We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 ME and 5 ME around circumbinary stars of various spectral type combinations.

The GJ 357 system harbors 3 planets orbiting a bright, nearby M2.5V star at 9.44pc. The innermost planet GJ 357 b (TOI-562.01) is a hot transiting Earth-size planet with Earth-like density, which receives about 12 times the irradiation Earth receives from the Sun, and was detected using data from TESS.

The Kepler data show that habitable small planets orbiting Red Dwarf stars (RDs) are abundant, and hence might be promising targets to look at for biomarkers and life. Planets orbiting within the Habitable Zone of RDs are close enough to be tidally locked.

The main idea is easy to grasp: Set Goldilocks loose in our galaxy and let her choose a planet that's "just right." For decades, the Goldilocks zone has been the go-to shorthand for scientists. More formally known as the "habitable zone," it's the region around a star where the temperature is just right for liquid water to pool on the surface of planets with suitable atmospheres.

New instruments and telescopes, such as SPIRou, CARMENES and TESS, will increase manyfold the number of known planets orbiting M dwarfs.

We investigate the hypothesis that the size of the habitable zone around hardened binaries in dense star-forming regions increases. Our results indicate that this hypothesis is essentially incorrect.

High obliquity planets represent potentially extreme limits of terrestrial climate, as they exhibit large seasonality, a reversed annual-mean pole-to-equator gradient of stellar heating, and novel cryospheres.

A rigorous definition of the habitable zone and its dependence on planetary properties is part of the search for habitable exoplanets.

Water-worlds are water-rich (>1 wt% H2O) exoplanets. The classical models of water-worlds considered layered structures determined by the phase boundaries of pure water.

Detecting and confirming terrestrial planets is incredibly difficult due to their tiny size and mass relative to Sun-like host stars.

The closest potentially habitable worlds outside our Solar system orbit a different kind of star than our Sun: smaller red dwarf stars.

Water is fundamental to our understanding of the evolution of planetary systems and the delivery of volatiles to the surfaces of potentially habitable planets.

The habitable zone (HZ) is the region around a star(s) where standing bodies of water could exist on the surface of a rocky planet.

Scientists looking for signs of life beyond our solar system face major challenges, one of which is that there are hundreds of billions of stars in our galaxy alone to consider. To narrow the search, they must figure out: What kinds of stars are most likely to host habitable planets?

« Previous  1 2 3 4