Results tagged “astrochemistry”

The cometary materials are thought to be the reservoir of primitive materials in the solar system. The recent detection of glycine and CH3NH2 by the ROSINA mass spectrometer in the coma of 67P/Churyumov-Gerasimenko suggests that amino acids and their precursors have been formed in such an early evolutionary phase of the Solar System.

The C2H4O2 isomers have been previously investigated primarily via disparate sets of observations involving single dish and array measurements.

Organics in the Solar System

Complex organics are now commonly found in meteorites, comets, asteroids, planetary satellites, and interplanetary dust particles. The chemical composition and possible origin of these organics are presented.

Theories of a pre-RNA world suggest that glycolonitrile (HOCH2CN) is a key species in the process of ribonucleotide assembly, which is considered as a molecular precursor of nucleic acids.

Rocky planets orbiting red dwarf stars may be bone dry and lifeless, according to a new study using NASA's Hubble Space Telescope. Water and organic compounds, essential for life as we know it, may get blown away before they can reach the surface of young planets.

Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.

New research suggests that the sugar molecule that puts the "D" in DNA -- 2-deoxyribose -- could exist in the far reaches of space. A team of NASA astrophysicists were able to create DNA's sugar in laboratory conditions that mimic interstellar space.

In their search for life in solar systems near and far, researchers have often accepted the presence of oxygen in a planet's atmosphere as the surest sign that life may be present there. A new Johns Hopkins study, however, recommends a reconsideration of that rule of thumb.

Late Delivery of Nitrogen to Earth

Atmospheric nitrogen may be a necessary ingredient for the habitability of a planet since its presence helps to prevent water loss from a planet. The present day nitrogen isotopic ratio, 15N/14N, in the Earth's atmosphere is a combination of the primitive Earth's ratio and the ratio that might have been delivered in comets and asteroids.

The origin of the reservoirs of water on Earth is debated. The Earth's crust may contain at least three times more water than the oceans.

A new study led by The Australian National University (ANU) has investigated the nature of a cosmic phenomenon that slows down star formation, which helps to ensure the universe is a place where life can emerge.

The formyl radical HCO has been proposed as the basic precursor of many complex organic molecules such as methanol (CH3OH) or glycolaldehyde (CH2OHCHO).

We present new estimates of protosolar elemental abundances based on an improved combination of solar photospheric abundances and CI chondritic abundances. These new estimates indicate CI chondrites and solar abundances are consistent for 60 elements.

Until now, in the scientific community there has been the prevailing view that thermal processes associated exclusively with the combustion and high-temperature processing of organic raw materials such as oil, coal, wood, garbage, food, tobacco underpin the formation of PAHs

Extraterrestrial amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth are present in meteoritic samples.

In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds.

All living beings need cells and energy to replicate. Without these fundamental building blocks, living organisms on Earth would not be able to reproduce and would simply not exist.

The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects.

It is not known whether the original carriers of Earth's nitrogen were molecular ices or refractory dust.

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos.

« Previous  1 2 3 4 5 6 7 8 9 10 11