Results tagged “exoplanet”

The search for life on planets beyond our solar system has long been the purview of science fiction, but a UC Santa Barbara team supported by the Heising-Simons Foundation is now building the technology to do just that.

Most planets currently amenable to transit spectroscopy are close enough to their host star to exhibit a relatively strong day to night temperature gradient. For hot planets, this leads to cause a chemical composition dichotomy between the two hemispheres.

We present the results of an independent search of all ~200,000 stars observed over the four year Kepler mission (Q1-Q17) for multiplanet systems, using a three-transit minimum detection criteria to search orbital periods up to hundreds of days.

Little is known about the interaction between atmospheres and crusts of exoplanets so far, but future space missions and ground-based instruments are expected to detect molecular features in the spectra of hot rocky exoplanets.

Earth-Like is an interactive website and twitter bot that allows users to explore changes in the average global surface temperature of an Earth-like planet due to variations in the surface oceans and emerged land coverage, rate of volcanism (degassing), and the level of the received solar radiation.

We examined the solar gravitational lens (SGL) as the means to produce direct high-resolution, multipixel images of exoplanets.

Small planets are common around late-M dwarfs and can be detected through highly precise photometry by the transit method. Planets orbiting nearby stars are particularly important as they are often the best-suited for future follow-up studies.

A signal originally detected by the Kepler spacecraft has been validated as an exoplanet using the Habitable-zone Planet Finder (HPF), an astronomical spectrograph built by a Penn State team and recently installed on the 10m Hobby-Eberly Telescope at McDonald Observatory in Texas.

Terrestrial-type exoplanets orbiting nearby red dwarf stars (M-dwarfs) are among the best targets for atmospheric characterization and biosignature searches in the near future.

Robust atmospheric and radiative transfer modeling will be required to properly interpret reflected light and thermal emission spectra of terrestrial exoplanets.

In recent years, it has become clear that a substantial fraction of transiting exoplanets have some form of aerosol present in their atmospheres.

Context: Around 30 per cent of the observed exoplanets that orbit M dwarf stars are gas giants that are more massive than Jupiter. These planets are prime candidates for formation by disc instability.

We report the detection of a transiting super-Earth-sized planet (R=1.39+-0.09 Rearth) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V=11, K=7.1) located at 25.15+-0.02 pc.

New astronomy research from the University of Central Lancashire (UCLan) suggests giant planets could form around small stars much faster than previously thought.

The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s.

Recent ALMA observations indicate that the majority of bright protoplanetary discs show signatures of young moderately massive planets.

Zechmeister et al. (2009) surveyed 38 nearby M dwarfs from March 2000 to March 2007 with VLT2 and the UVES spectrometer. This data has recently been reanalyzed (Butler et al. 2019), yielding a significant improvement in the Doppler velocity precision.

The next generation of ground- and space-based telescopes will be able to observe rocky Earth-like planets in the near future, transiting their host star. We explore how the transmission spectrum of Earth changed through its geological history.

The most widely-studied mechanism of mass loss from extrasolar planets is photoevaporation via XUV ionization, primarily in the context of highly irradiated planets.

Exoplanet discoveries have motivated numerous efforts to find unseen populations of exomoons, yet they have been unsuccessful. A plausible explanation is that most discovered planets are located on close-in orbits, which would make their moons prone to tidal evolution and orbital detachment.

  1 2 3 4 5 6 7 8 9 10